Biological effectiveness in hypofractionation: Modeling tumor survival probability for large doses with a stochastic cell-cycle model.
نویسندگان
چکیده
A model of irradiated cell survival probability based on cell-cycle regulation of an avascular tumor is developed. It is shown, that for high doses as used in hypofractionated regimens the conventional linear quadratic (LQ) model grossly underestimate cell survival. The surviving fraction of tumor cells in hypoxic and normoxic conditions is calculated as a function of dose for an equivalent tumor biological effective dose. The usefulness of an empirical LQ-linear model which is obtained from experimental data at high doses is investigated and the corresponding survival probabilities are compared in normoxic and hypoxic conditions. It has been found that the LQ model with hypoxia and the LQ-linear model partially coincide at high doses. Cell-cycle regulations have been found to considerably influence time-resolved response of cell populations to irradiation. In particular, if using LQ instead of LQ-linear model for high doses, a recovery of the population may be undiscovered.
منابع مشابه
Impact of Prolonged Fraction Delivery Time Modelling Stereotactic Body Radiation Therapy with High Dose Hypofractionation on the Killing of Cultured ACHN Renal Cell Carcinoma Cell Line
Introduction: Stereotactic body radiotherapy delivers hypofractionated irradiation with high dose per fraction through complex treatment techniques. The increased complexity leads to longer dose delivery times for each fraction. The purpose of this study is to investigate the impact of prolonged fraction delivery time with high-dose hypofractionation on the killing of cultured ACHN cells.Method...
متن کاملEffects of Charged Particles on Human Tumor Cells
The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential c...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملDynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model
Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...
متن کاملEvaluation of variable relative biological effectiveness and the creation of homogenous biological dose in the tumor region in helium ion radiation to the V79 cell line
In radiation therapy, ions heavier than proton have more biological advantages than a proton beam. Recently, ion helium has been considered due to high linear energy transfer (LET) to the medium and a higher relative biological effect (RBE). To design the spread-out Bragg peak (SOBP) of biological dose for radiation with any type of ion, we need exact values of RBE, which is dependent to dose, ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomedizinische Technik. Biomedical engineering
دوره 57 Suppl 1 شماره
صفحات -
تاریخ انتشار 2012